

Faculty of Science

Institute for Astronomy and Astrophysics

Exploring Time Variability Properties of X-ray Pulsars through Accretion Torque Models Advisors: Dr. Lorenzo Ducci, Prof. Dott. Andrea Santangelo

HEA Group Meeting | April 26, 2019 | Inga Saathoff

Motivation

Observations & Models: Accreting X-ray Pulsars

• Spin reversals (e.g. in GX 1+4, 4U 1626-67 and OAO 1657-415)

Motivation

Observations & Models: Accreting X-ray Pulsars

- Spin reversals (e.g. in GX 1+4, 4U 1626-67 and OAO 1657-415)
- Models don't account for these reversals, need fine tuning or pose other problems

Motivation

Observations & Models: Accreting X-ray Pulsars

- Spin reversals (e.g. in GX 1+4, 4U 1626-67 and OAO 1657-415)
- Models don't account for these reversals, need fine tuning or pose other problems

\Downarrow

Study the Pulsar in OAO 1657-415

- Investigate if an inclined rotator model can explain the observations in this particular pulsar.
- Examine over 10 years of data from *Fermi*/GBM and *Swift*/BAT to increase the understanding of this source.

Accretion Mechanisms and Classification of XRBs Characteristic Radii Models

Part I: Inclined Rotator Model by Perna et al. 2006

Inclined Rotator Model Influence of the Parameters B, β, χ Time Variable \dot{M}_* OAO 1657-415

Part II: Frequency History and Torque-Flux Correlation of OAO 1657-415

Introduction Frequency and Flux History Distance and Magnetic Field Calculation

Conclusion & Outlook

Introduction

Accretion Mechanisms and Classification of XRBs Characteristic Radii Models

Part I: Inclined Rotator Model by Perna et al. 2006

Inclined Rotator Model Influence of the Parameters B, β, χ Time Variable \dot{M}_* OAO 1657-415

Part II: Frequency History and Torque-Flux Correlation of OAO 1657-415

Introduction Frequency and Flux History Distance and Magnetic Field Calculation

Conclusion & Outlook

Accretion Mechanisms and Classification of XRBs

Accretion Mechanisms and Classification of XRBs

Accretion Mechanisms and Classification of XRBs

I: Inclined Rotator

Accretion Mechanisms and Classification of XRBs

High Mass X-ray Binaries (HMXBs)

- Compact object: Neutron Star, White Dwarf or Black Hole
- Companion: Early type star (O-B) with $M > 5 M_{\odot}$
- Strong magnetic field ($\sim 10^{12}$ G)

tion

I: Inclined Rotator

II: Torque-Flux

Accretion Mechanisms and Classification of XRBs

High Mass X-ray Binaries (HMXBs)

- Compact object: Neutron Star, White Dwarf or Black Hole
- Companion: Early type star (O-B) with M > 5 M_☉
- Strong magnetic field ($\sim 10^{12}$ G)

Low Mass X-ray Binaries (LMXBs)

- Compact object: Neutron Star or Black Hole
- Companion: Late type star (M-K) with $M < 1 \text{ M}_{\odot}$
- Low magnetic field ($\sim 10^9$ G)

• Corotation Radius: The radius, where the Keplerian frequency of the orbiting matter is equal to the NS spin frequency Ω_0 :

$$m{R}_{
m co} = \left(rac{GM}{\Omega_0^2}
ight)^{1/3}$$

2	Inclined	Rotator
bc	00000	
)		
)		
DC	0	

• Corotation Radius: The radius, where the Keplerian frequency of the orbiting matter is equal to the NS spin frequency Ω_0 :

$${\sf R}_{\sf co} = \left(rac{GM}{\Omega_0^2}
ight)^{1/3}$$

• Magnetospheric Radius: $(B \approx \mu/r^3)$

$$\frac{1}{2}\rho v_{\rm ff}^2 = \frac{B^2}{8\pi}$$
$$\Rightarrow R_{\rm M} = \left(\frac{\mu^4}{2GM\dot{M}^2}\right)^{1/7}$$

• Corotation Radius: The radius, where the Keplerian frequency of the orbiting matter is equal to the NS spin frequency Ω_0 :

$${\sf R}_{\sf co} = \left(rac{GM}{\Omega_0^2}
ight)^{1/3}$$

• Magnetospheric Radius: $(B \approx \mu/r^3)$

$$\frac{1}{2}\rho v_{\rm ff}^2 = \frac{B^2}{8\pi}$$
$$\Rightarrow R_{\rm M} = \left(\frac{\mu^4}{2GM\dot{M}^2}\right)^{1/7}$$

If $R_{\rm M} < R_{\rm co}$, matter can be accreted. If $R_{\rm M} > R_{\rm co}$, matter is propelled away.

Models: Early Works

Angular momentum transferred by accreting matter from the disk to the star through the magnetosphere-disk interaction \rightarrow NS spins up. Reminder: $R_{\rm co} \propto \Omega_0^{-2/3}$

 \Rightarrow Does not account for observed spin-reversals!

Models: Ghosh & Lamb 1978, 1979a,b

The interaction between the magnetosphere and the disk can be divided into:

- Boundary Layer: material torque
- Transition Region: toroidal component of the magnetic field

Models: Ghosh & Lamb 1978, 1979a,b

$$-\dot{P} = 5 imes 10^{-5} \mu_{30}^{2/7} n(\omega_s) S_1(M) (PL_{37}^{3/7})^2 \, {
m s} \, {
m yr}^{-1}$$

$$\omega_{m{s}} = {\sf 1}.35\,\mu_{30}^{6/7}S_2(M)({\it PL}_{37}^{3/7})^2\,{
m s\,yr^{-1}}$$

$$S_1(M) = R_6^{6/7} (M/M_\odot)^{-3/7} I_{45}^{-1}$$

$$S_2(M) = R_6^{-3/7} (M/M_{\odot})^{-2/7}$$

Models: Ghosh & Lamb 1978, 1979a,b

- Torque is a function of \dot{M}
- Smooth and monotonically increasing
- ⇒ Spin reversals with *v* of the same magnitude but opposite sign requires fine tuning!
- ⇒ In spin-down, L is expected to be low Ł observations

Models: Retrograde Accretion Disk

• In GL model: correlation between torque and luminosity during spin-up; no anti-correlation during spin-down.

- Hydrodynamic calculations showed that a retrograde-rotating disk can form in wind-fed systems
 - \rightarrow NS spins down (negative accreted angular momentum).
- Chakrabarty et al. (1997) found anti-correlation in GX 1+4 \rightarrow indication for retrograde accretion disk.

Accretion Mechanisms and Classification of XRBs Characteristic Radii Models

Part I: Inclined Rotator Model by Perna et al. 2006

Inclined Rotator Model Influence of the Parameters B, β, χ Time Variable \dot{M}_* OAO 1657-415

Part II: Frequency History and Torque-Flux Correlation of OAO 1657-415

Introduction Frequency and Flux History Distance and Magnetic Field Calculation

Conclusion & Outlook

Aims

Study the Inclined Rotator Model (Perna et al. 2006):

- Explore the model and investigate the influence of different parameters (B, χ, β).
- Introduce a new component to obtain a long-term spin-up or spin-down, which is superposed on the cyclic spin reversals.
- Apply the model to the X-ray pulsar in OAO 1657-415 to constrain some of the parameters.

I: Inclined Rotator

$$B^2=rac{\mu^2}{r^6}[1+3(\sin\chi\sin\phi)^2]$$

$R_{M}(\phi) = 3.2 \times 10^{8} \mu_{30}^{4/7} M_{1}^{-1/7} \dot{M}_{17}^{-2/7} [1 + 3(\sin\chi\sin\phi)^{2}]^{2/7} \,\mathrm{cm}$

- $R_M(\phi) < R_{co}$: accretion
- $R_{co} < R_M(\phi) < R_{inf}$: recycling

•
$$R_M(\phi) > R_{inf}$$
: ejection

$$R_M(\phi) = 3.2 \times 10^8 \mu_{30}^{4/7} M_1^{-1/7} \dot{M}_{17}^{-2/7} [1 + 3(\sin\chi\sin\phi)^2]^{2/7} \,\mathrm{cm}$$

Contributions to \dot{M}_{tot}

I: Inclined Rotator

Contributions to \dot{M}_{tot}

I: Inclined Rotator

Hysteresis Limit Cycle

9.5

9

II: Torque-Flux 0000

Time Evolution: GX 1+4

Perna et al. 2006

Time Evolution: GX 1+4

• $B = 6 \times 10^{13}$ G, $\chi = 45^{\circ}$, $\beta = 0.3$ (elasticity parameter: a measure of how efficiently the KE of the NS is converted into KE of the ejected matter)

Time Evolution: GX 1+4

I: Inclined Rotator

II: Torque-Flux

Conclusion

Time Evolution: 4U 1626-67

I: Inclined Rotator

II: Torque-Flux

Conclusion

Time Evolution: 4U 1626-67

Influence of the Parameters B, β, χ

- ν: "equilibrium" frequency: average between frequencies of torque reversals
- $\Delta \nu$: amplitude between reversals
- Δt : time between reversals
- ΔL : luminosity variation (amplitude)

Influence of the Parameters B, β, χ

- ν: "equilibrium" frequency: average between frequencies of torque reversals
- $\Delta \nu$: amplitude between reversals
- Δt : time between reversals
- ΔL : luminosity variation (amplitude)

Parameters	ν	$\Delta \nu$	Δt	ΔL
$B\uparrow$	\downarrow	\downarrow	\downarrow	const.
$\beta\downarrow$	\uparrow	\uparrow	\uparrow	\uparrow
$\chi\uparrow$	\downarrow	\downarrow	\uparrow	\downarrow

Time Variable M_* – Feasibility Test based on GX 1+4

Parameters

- Spin-down: $dM/dt = -2.12 \times 10^{13} \text{ g s}^{-1} \text{ yr}^{-1}$ Spin-up: $dM/dt = 3.68 \times 10^{13} \text{ g s}^{-1} \text{ yr}^{-1}$

OAO 1657-415: Introduction and Observations

Parameters

- HMXB
- Companion: Ofpe supergiant
- $M_{\rm NS}=1.74\,M_\odot$
- $M_{opt} = 17.5 \, M_{\odot}$
- $R_{opt} = 25 R_{\odot}$
- $d = 7.1 \pm 1.3 \, \text{kpc}$
- $P \approx 37 38 \,\mathrm{s}$

(Falanga et al. 2006) (Falanga et al. 2006) (Falanga et al. 2006) (Audley et al. 2006) (Barnstedt et al. 2008)

OAO 1657-415: Introduction and Observations

OAO 1657-415: Introduction and Observations

I: Inclined Rotator

II: Torque-Flux

Application of the Model

Parameters

- $B = 7 \times 10^{13}$ G, $\chi = 36^{\circ}$, $\beta = 0.8$
- Frequency √, Frequency amplitude ✗, Luminosity change ✗

Aims

Study the Inclined Rotator Model (Perna et al. 2006):

✓ Explore the model and investigate the influence of different parameters (B, χ, β).

Influence of parameters:

Parameters	ν	$\Delta \nu$	Δt	ΔL
$B\uparrow$	\downarrow	\downarrow	\downarrow	const.
$\beta\downarrow$	\uparrow	\uparrow	\uparrow	\uparrow
$\chi\uparrow$	\downarrow	\downarrow	\uparrow	\downarrow

Aims

Study the Inclined Rotator Model (Perna et al. 2006):

- ✓ Explore the model and investigate the influence of different parameters (B, χ, β).
- \checkmark Introduce a new component to obtain a long-term spin-up or spin-down, which is superposed on the cyclic spin reversals.

Influence of parameters:						
Parameters	ν	$\Delta \nu$	Δt	ΔL		
$B\uparrow$	\downarrow	\downarrow	\downarrow	const.		
$\beta\downarrow$	\uparrow	\uparrow	\uparrow	\uparrow		
$\chi\uparrow$	\downarrow	\downarrow	\uparrow	\downarrow		

Aims

Study the Inclined Rotator Model (Perna et al. 2006):

- ✓ Explore the model and investigate the influence of different parameters (B, χ, β).
- ✓ Introduce a new component to obtain a long-term spin-up or spin-down, which is superposed on the cyclic spin reversals.
- (\checkmark) Apply the model to the X-ray pulsar in OAO 1657-415 to constrain some of the parameters.

Parameters OAO 1657-415:

- $B = 7 \times 10^{13} \, \mathrm{G}$
- $\chi = 36^{\circ}$, $\beta = 0.8$
- Frequency \checkmark
- Frequency amplitude X
- Luminosity change X

Accretion Mechanisms and Classification of XRBs Characteristic Radii Models

Part I: Inclined Rotator Model by Perna et al. 2006

Inclined Rotator Model Influence of the Parameters B, β, χ Time Variable \dot{M}_* OAO 1657-415

Part II: Frequency History and Torque-Flux Correlation of OAO 1657-415

Introduction Frequency and Flux History Distance and Magnetic Field Calculation

Conclusion & Outlook

Aims

Examine the Frequency and Flux History of OAO 1657-415 *Fermi/GBM* and *Swift/BAT* data:

- Investigate over 10 years of data (2008 2018).
- Study the Torque-Flux correlation.
- Constrain the magnetic field and distance.

Previous Work by Jenke et al. 2012

tion

Previous Work by Jenke et al. 2012

I: Inclined Rotator

Frequency and Flux History

28 | Inga Saathoff | HEA Group Meeting | April 26, 2019

© 2019 Universität Tübingen

II: Torque-Flux

Torque-Flux Correlation of OAO 1657-415

Torque-Flux Correlation of OAO 1657-415

II: Torque-Flux

Torque-Flux Correlation of OAO 1657-415: rms

rms averages:

- Spin-up ($\dot{\nu} > 2.5 \times 10^{-12} \,\text{Hz}\,\text{s}^{-1}$):
- Spin-down ($\dot{\nu} < -2.5 \times 10^{-12} \,\text{Hz}\,\text{s}^{-1}$):

 $\begin{array}{c} 20.9 \pm 3.3 \ \% \\ 36.5 \pm 7.4 \ \% \\ 34.8 \pm 5.9 \ \% \end{array}$

• In-between:

I: Inclined Rotator

Torque-Flux Correlation of OAO 1657-415: rms

rms averages:

- Spin-up ($\dot{\nu} > 2.5 \times 10^{-12} \,\text{Hz}\,\text{s}^{-1}$):
- Spin-down ($\dot{\nu} < -2.5 \times 10^{-12} \,\text{Hz}\,\text{s}^{-1}$):

 $\begin{array}{c} 20.9\pm 3.3\ \%\\ 36.5\pm 7.4\ \%\\ 34.8\pm 5.9\ \%\end{array}$

• In-between:

Distance and Magnetic Field Calculation

Accretion Mechanisms and Classification of XRBs Characteristic Radii Models

Part I: Inclined Rotator Model by Perna et al. 2006

Inclined Rotator Model Influence of the Parameters B, β, χ Time Variable \dot{M}_* OAO 1657-415

Part II: Frequency History and Torque-Flux Correlation of OAO 1657-415

Introduction Frequency and Flux History Distance and Magnetic Field Calculation

Conclusion & Outlook

Conclusion - Part I: Inclined Rotator

Parameters OAO 1657-415:

- $B = 7 \times 10^{13} \, \mathrm{G}$
- $\chi = 36^{\circ}$, $\beta = 0.8$
- Frequency \checkmark
- Frequency amplitude X
- Luminosity change X

Conclusion - Part II: Torque-Flux Correlation

Low variability on spin-up branch: stable accretion disk

- Variability + its distribution different in other regions: other process? No disk?
- $B = 2 \times 10^{10} \,\mathrm{G}$ to $2 \times 10^{12} \,\mathrm{G}$
- d = 8 kpc to 15 kpc

[10

Residuals

II: Torque-Flux

Outlook/Future Work

- More data: large spin-down with high flux to support retrograde disk?
- Spectral analysis: same or different processes in different areas? (Combine XRT + BAT?)

Thank you.

Contact:

Inga Saathoff

Office A112 Institute for Astronomy and Astrophysics Sand 1, 72076 Tübingen

saathoff@astro.uni-tuebingen.de